利用TDR (时域反射计)测量传输延时
摘要:随着时钟速率的提高,利用高速示波器有源探头测量延时的传统方法很难获得准确结果。这些探头成为高速信号通路的一部分,并造成被测信号的失真,引入误差。探头还必须直接置于器件引脚,以消除PCB (印刷电路板)引线长度产生的延时误差,满足探头位置的这一要求是困难而复杂的过程。本文介绍了如何利用TDR (时域反射计)测量降低探头误差的方法,有助于提高传输延时测量精度。
分析方法
本文基于以下三个前提:
1.利用TDR (时域反射计)减小探头误差。TDR通常用来测量信号通路长度与阻抗变化的关系。TDR也是测量传输延2.时的重要工具。
2.避免直接探测。由于加载的原因,有源探头会使测量变得复杂,并引入误差。
3.利用一个实例演示这一方法。本文将以MAX9979为例,该芯片为高速引脚电子电路,适合于ATE系统。芯片内部集成了双路高速驱动器、有源负载以及工作在1Gbps以上的窗比较器。
此处介绍的方法适用于任何高速器件。
TDR原理
TDR测试方法中,沿信号通路传输高速信号边沿,并观察其反射信号。反射能够说明信号通路的阻抗以及阻抗变化时信号延时的变化,TDR测试的简单示意图如图1所示:

图1. TDR原理,TDR测量基于反射系数ρ,其中ρ = (VREFLECTED/VINCIDENT)。较终,ZO = ρ × (1 + ρ)/(1 - ρ)。从图1可以得到两个重要概念:
1.TDLY是我们将要测量的PCB (印刷电路板)引线延时。
2.ZO是被测PCB引线的阻抗。
仪器和评估板
为了测量纳秒级的延时,需要非常快的脉冲发生器、高速示波器以及高速探头。我们也可以利用具有TDR测量功能的Tektronix® 8000 (图2)系列示波器(TDS8000、CSA8000或CSA8200),配合80E04 TDR采样模块使用。本文采用MAX9979EVKIT (评估板)、Hewlett Packard 8082A脉冲发生器和TDS8000/80E04进行演示。图3所示为MAX9979EVKIT部分电路。可以选择使用任何具有TDR功能的高速示波器和任何高速差分脉冲发生器,同样能够获得相似结果。

图2. Tektronix TDS8000系列具有采样模式的示波器

图3. MAX9979EVKIT (部分)
分析中将进行以下测量:
1.从PCB的SMA边缘连接器DATA1/NDATA1至MAX9979 IC输入引脚DATA1/NDATA1的延时。从MAX9979的DUT1 (被测器件)输出通过SMA连接器J18的延时。
2.连接DUT1输出至CSA8000的测试电缆延时。
3.从DATA1/NDATA1输入至DUT1输出,通过电缆到达CSA8000的总延时。
4.较后,计算MAX9979的实际延时。
DATA1/NDATA1输入建模
由于人们对TDR响应比较困惑,我们首先利用SPICE仿真器构建输入延时的模型。然后我们将仿真结果与实际测量进行比较,参见图4。

图4. 等效输入原理图和较终仿真模型
图4注释:
1.PCB引线设定为6in长,阻抗为65Ω。实际上,这是DATA1/NDATA1 PCB引线的真实阻抗。理想情况下为50Ω,但我们从TDR测量结果将会看到该值为63Ω。
2.NDATA1输出端接至地。由于DATA1和NDATA1对称,而且距离MAX9979引脚的长度相同,所以仅测量DATA1的PCB引线。
3.对信号发生器的12in电缆进行建模,但实际传输延时测量证明并不需要这一建模。
DATA1/NDATA1输入仿
图5所示为TPv3的SPICE仿真波形。

图5. 图4所示模型的SPICE仿真(节点TPv3),在MAX9979EVKIT DATA1输入采集到的数据。
从图5数据可以得出以下几点结论:
1.输入信号为阶跃函数。这次仿真中,阶跃幅度为0.5V。以此模拟CSA8000产生的TDR信号。
2.时间代表模型中不同单元的延时:
a.第1级表示发生器的12in电缆。延时大约为3ns,是实际延时的两倍。实际电缆延时为1.5ns。
b.第2级表示DATA1 PCB引线。延时大约为2ns,PCB延时为该值的一半,或1ns。
c.其它延时为脉冲通过DATA1 PCB引线的反射。
3.Y轴反映了不同元件的阻抗,单位为伏特,可转换为阻抗。
4.X轴为单次输入阶跃信号造成的模拟信号反射,参照图1对信号进行比较。这些信号的长度代表通过不同元件的延时。
MAX9979的传输延时测量
按照以下六个步骤进行传输延时测量。
第1步:测量连接DUT1节点到CSA8000垂直输入的2in长SMA电缆的延时(图6)。

图6. 2in SMA电缆的CSA8000 TDR
测量时:
1.将2in长SMA-SMA电缆连接至80E04 TDR模块的一路输入,另一端保持开路。
2.利用TDR的下拉菜单进行测量。
3.注意,这看起来很像图1中的“开路”示例。此处测得的延时为804ps,由于是两倍的电缆延时,所以电缆延时为402ps。
4.还需注意的是,第2级阶跃实际为顶部和底部之间的一半。根据TDR原理,表示2in长度电缆实际阻抗为50Ω。
5.这条2in电缆是我们测量延时的通路之一。
第2步:测量DATA1输入信号的PCB引线延时/阻抗。

图7. DATA1 PCB TDR阻抗测量
从该数据可以获得以下几项信息:
1.图7与图5中的仿真曲线相同,证明了模型的准确性。
2.光标用于测量线路阻抗。第1级阶跃为49.7Ω,代表CSA8000电缆。与我们的预期结果一致。
3.第二光标显示97.8Ω,为MAX9979内部DATA1/NDATA1两端的100Ω电阻(参见图4)。与我们的预期结果一致。
4.第2级阶跃阻抗不是50Ω。这一级为DATA1 PCB阻抗,大约为63Ω。这意味着DATA1和NDATA1的PCB引线不是我们所希望的50Ω。
5.大幅值为150Ω,是额外的50Ω电缆和100Ω电阻,只存在于第3级反射。
该测量可以简化为:
1.将12in SMA电缆的一端连接至CSA8000。将电缆另一端连接至MAX9979EVKIT的DATA1 SMA输入连接器。
2.将NDATA1的SMA连接器通过SMA接地,从图4可以看出这一点。12in SMA电缆的长度与延时测量无关,但应尽可能短。
3.无需对MAX9979EVKIT供电。该测量针对焊接到电路板上的MAX9979进行,但不需要上电。有些用户更喜欢使用没有焊接器件的电路板进行测量。断开MAX9979将产生更清晰的3级阶跃信号,仿真图1所示开路状态。两种配置下,实际时间测量结果相同。

图8. 波形与图7相同,但为扩展后的波形,测量延时。
图8所示,测量第2级阶跃—DATA1 PCB引线延时。注意:
1. 第1级阶跃为电缆,我们对其延时并不感兴趣。
2.测量值为1.39ns,PCB延时为该值的一半,或为0.695ns。这一延时确实大于模型的延时,但我们仅利用模型估算延时加以比较。
3.测量在信号的倾斜沿进行。这些倾斜沿代表电路板SMA和MAX9979 DATA1引脚的电容效应。因此,在这些倾斜沿之间进行测量能够确保测试结果包含了SMA和PIN延时。还需注意的是,波形中存在凸峰:这是SMA连接器与电路板之间的电感产生的。由此,需要在凸峰之前进行测量,以确保获取完整的电路板延时。进一步的TDR测量读数将突显这些电容和电感造成的倾斜沿和凸峰。
第3步:测量DUT1输出信号的PCB引线延时/阻抗。

图9. DUT1 PCB TDR延时和阻抗测量
图9所示示波器波形是采用与图7、图8相同的设置产生的。我们现在采用一条2in长SMA电缆连接CSA8000 80E04模块MAX9979EVKIT的DUT1 SMA。注意:
1.第1级阶跃表示2in电缆。TDR信号为0.5V,第1级阶跃为250mV。说明我们电缆的阻抗为50Ω,与预期情况一致。
2.DUT1延时是在两个倾斜沿之间进行测量得到的,与上述DATA1测量说明相同。然而,需要注意的是:这些倾斜沿之间的电平同样为50Ω。该值
相关阅读:
- ...· Efinix® 全力驱动AI边缘计算,成功推出Trion™ T20 FPGA样品, 同时将产品扩展到二十万逻辑单元的T200 FPGA
- ...· 英飞凌亮相进博会,引领智慧新生活
- ...· 三电产品开发及测试研讨会北汽新能源专场成功举行
- ...· Manz亚智科技跨入半导体领域 为面板级扇出型封装提供化学湿制程、涂布及激光应用等生产设备解决方案
- ...· 中电瑞华BITRODE动力电池测试系统顺利交付北汽新能源
- ...· 中电瑞华FTF系列电池测试系统中标北京新能源汽车股份有限公司
- ...· 中电瑞华大功率高压能源反馈式负载系统成功交付中电熊猫
- ...· 中电瑞华国际在电动汽车及关键部件测评研讨会上演绎先进测评技术
- ...· 华芯微国产汽车芯片门电路系列(篇一)
- ...· 华芯微国产汽车芯片CAN收发器系列(篇一)
- ...· 华芯微国产汽车芯片DC/DC转换器系列
- ...· 华芯微国产汽车芯片DC/DC转换器系列
- ...· 华芯微国产汽车芯片运算放大器系列(篇一)
- ...· 华芯微国产汽车芯片MOSFET 驱动器系列(篇一)
- ...· 数据采集终端系统设备
- ...· 简仪科技踏上新征程








